

SQUAD — Software Quality Dashboard

Contents:

	Introduction: data model and usage
	Core data model

	Submitting results

	Input file formats
	Test results

	Metrics

	Metadata

	CI loop integration (optional)
	Default auth group 'squad'

	Quick start: Running SQUAD locally

	Development-related notes and tips
	Running a development environment under Docker

	Checklist for loading a copy of a production database

	Running Javascript unit tests

	Log monitoring

	Translating the SQUAD user interface

	Plugins: usage and development
	Enabling plugins

	Declaring plugins in your Python package

	The plugin API

	Adding plugin usage to the SQUAD core

	Full plugin package example

	Built-in notification plugins
	Github

	Gerrit

	Installation Instructions for production environments
	Installation using the Python package manager pip

	Message broker

	Processes

	Worker configuration

	Further configuration

	User management

	CI: continous integration support
	CI module in SQUAD

	Submitting test job requests

	Submitting test job watch requests

	Backend settings

	Supported backends
	LAVA

	API: Interacting with backend
	Available APIs

	Native APIs
	data

	createbuild

	submit

	submitjob

	watchjob

	resubmit

	forceresubmit

	REST APIs
	groups (/api/groups/)

	projects (/api/projects/)

	builds (/api/builds/)

	testjobs (/api/testjobs/)

	testruns (/api/testruns/)

	tests (/api/tests/)

	metrics (/api/metrics/)

	suites (/api/suites/)

	environments (/api/environments/)

	backends (/api/backends/)

	emailtemplates (/api/emailtemplates/)

	knownissues (/api/knownissues/)

	patchsources (/api/patchsources/)

	annotations (/api/annotations/)

	metricthresholds (/api/metricthresholds/)

	reports (/api/reports/)

	REST API Schema (for CLI)

	SQUAD-Client

	Badges

	Google Data Studio

	Use case: setup SQUAD with LAVA
	Introduction

	Setting up a LAVA instance

	Creating a Backend for a LAVA instance

	Creating a Project in SQUAD

	Submitting and fetching test jobs

	Extra use cases

Indices and tables

	Index

	Module Index

	Search Page

Introduction: data model and usage

Core data model

+----+ * +-------+ * +-----+ * +-------+ * +----+ * 1 +-----+
|Team|--->|Project|--->|Build|--->|TestRun|--->|Test|------>|Suite|
+----+ +---+---+ +-----+ +-------+ +----+ +-----+
 ^ * ^ | * | ^ 1
 | | | | * +------+ * |
 +---+--------+ | | +--->|Metric|--------+
 |Subscription| | | +------+
 +------------+ | v 1
 +-------------+ | +-----------+
 |ProjectStatus|-+ |Environment|
 +-------------+ +-----------+

SQUAD is multi-group and multi-project. Each group can have multiple
projects. For each project, you can have multiple builds, and for each
build, multiple test runs. Each test run can include multiple test
results, which can be either pass/fail results, or metrics, containing
one or more measurement values. Test and metric results can belong to a
Suite, which is a basically used to group and analyze results together.
Every test suite must be associated with exactly one Environment, which
describes the environment in which the tests were executed, such as
hardware platform, hardware configuration, OS, build settings (e.g.
regular compilers vcs optimized compilers), etc. Results are always
organized by environments, so we can compare apples to apples.

Projects can have subscriptions, which are either users or manually-entered
email addreses that should be notified about important events such as changing
test results. ProjectStatus records the most recent build of a project, against
which future results should be compared in search for important events to
notify subscribers about. SQUAD also supports a metric threshold system, which
will send notification to project subscribers if the test result metrics exceed
a certain value. The threshold values will also appear in the charts. Projects
have the project_settings field for any specific configuration it might require.

Builds can be compared against baselines exposing regressions and fixes. Visit
/_/comparebuilds/, select a project then two builds from it. This comparison
will go over each build's tests and find all different states from each. For instance
if a test failed in baseline but passes in a more current one, this is considered
to be a "fix". The opposite is called "regression". The concept can vary
for other transitions.

Submitting results

The API is the following

POST /api/submit/:group/:project/:build/:environment

	:group is the group identifier. It must exist previously.

	:project is the project identifier. It must exist previously.

	:build is the build identifier. It can be a git commit hash, a
Android manifest hash, or anything really. Extra information on the
build can be submitted as an attachment. If a build timestamp is not
informed there, the time of submission is assumed.

	:environment is the environmenr identitifer. It will be created
automatically if does not exist before.

All of the above identifiers (:group, :project, :build, and
:environment) must match the regular expression
[a-zA-Z0-9][a-zA-Z0-9_.-]*.

The test data files must be submitted as either file attachments, or as
regular POST parameters. . The following files are supported:

	tests: test results data

	metrics: metrics data

	metadata: metadata about the test run

	attachment: arbitrary file attachments. Multiple attachments can
be submitted by providing this parameter multiple times.

See Input file formats below for details on
the format of the data files.

Example with test data as file uploads:

$ curl \
 --header "Auth-Token: $SQUAD_TOKEN" \
 --form tests=@/path/to/test-results.json \
 --form metrics=@/path/to/metrics.json \
 --form metadata=@/path/to/metadata.json \
 --form log=@/path/to/log.txt \
 --form attachment=@/path/to/screenshot.png \
 --form attachment=@/path/to/extra-info.txt \
 https://squad.example.com/api/submit/my-group/my-project/x.y.z/my-ci-env

Example with test data as regular POST parameters:

$ curl \
 --header "Auth-Token: $SQUAD_TOKEN" \
 --form tests='{"test1": "pass", "test2": "fail"}' \
 --form metrics='{"metric1": 21, "metric2": 4}' \
 --form metadata='{"foo": "bar", "baz": "qux", "job_id": 123}' \
 --form log='log text ...' \
 --form attachment=@/path/to/screenshot.png \
 --form attachment=@/path/to/extra-info.txt \
 https://squad.example.com/api/submit/my-group/my-project/x.y.z/my-ci-env

Example with test data using Python's requests library:

import json
import requests
import os

tests = json.dumps({"test1": "pass", "test2": "fail"})
metrics = json.dumps({"metric1": 21, "metric2": 4})
metadata = json.dumps({"foo": "bar", "baz": "qux", "job_id": 123})
log = 'log text ...'

headers = {"Auth-Token": os.getenv('SQUAD_TOKEN')}
url = 'https://squad.example.com/api/submit/my-group/my-project/x.y.z/my-ci-env'
data = {"metadata": metadata, "log": log, "tests": tests_file}

result = requests.post(url, headers=headers, data=data)
if not result.ok:
 print(f"Error submitting to qa-reports: {result.reason}: {result.text}")

Since test results should always come from automation systems, the API
is the only way to submit results into the system. Even manual testing
should be automated with a driver program that asks for user input, and
them at the end prepares all the data in a consistent way, and submits
it to dashboard.

Input file formats

Test results

Test results must be posted as JSON, encoded in UTF-8. The JSON data
must be a hash (an object, strictly speaking). Test names go in the
keys, and values must be either "pass" or "fail". Case does not
matter, so "PASS"/"FAIL" will work just fine. Any value that
when downcased is not either "pass" or "fail" will be mapped to
None/NULL and displayed in the UI as skip.

Tests that have "fail" as results and are known to have any issues
are displayed as xfail (eXpected-fail).

Tests can be grouped in test suites. For that, the test name must be
prefixed with the suite name and a slash (/). Therefore, slashes are
reserved characters in this context, and cannot be used in test names.
There is one exception to this rule. If test name contains square brackets
([,]) they are considered as test variant. The string inside
brackets can contain slashes. Suite names can have embedded slashes in
them; so "foo/bar" means suite "foo", test "bar"; and "foo/bar/baz" means
suite "foo/bar", test "baz".

Example:

{
 "test1": "pass",
 "test2": "pass",
 "testsuite1/test1": "pass",
 "testsuite1/test2": "fail",
 "testsuite2/subgroup1/testA": "pass",
 "testsuite2/subgroup2/testA": "pass",
 "testsuite2/subgroup2/testA[variant/one]": "pass",
 "testsuite2/subgroup2/testA[variant/two]": "pass"
}

There is an alternative format for sending results. Since SQUAD supports
storing test log in the Test object, passed JSON file can look as follows:

{
 "test1": {"result": "pass", "log": "test 1 log"},
 "test2": {"result": "pass", "log": "test 2 log"},
 "testsuite1/test1": {"result": "pass", "log": "test 1 log"},
 "testsuite1/test2": {"result": "fail", "log": "test 2 log"}
}

Both forms are supported. In case log entry is missing or simple JSON
format is used, logs for each Test object are empty. They can be filled
in using plugins.

Metrics

Metrics must be posted as JSON, encoded in UTF-8. The JSON data must be
a hash (an object, strictly speaking). Metric names go in the keys, and
values must be either a single number, or an array of numbers. In the
case of an array of numbers, then their mean will be used as the metric
result; the whole set of results will be used where applicable, e.g. to
display ranges.

As with test results, metrics can be grouped in suites. For that, the
test name must be prefixed with the suite name and a slash (/).
Therefore, slashes are reserved characters in this context, and cannot
be used in test names. Suite names can have embedded slashes in them; so
"foo/bar" means suite "foo", metric "bar"; and "foo/bar/baz" means suite
"foo/bar", metric "baz".

Example:

{
 "v1": 1,
 "v2": 2.5,
 "group1/v1": [1.2, 2.1, 3.03],
 "group1/subgroup/v1": [1, 2, 3, 2, 3, 1]
}

Metadata

Metadata about the test run must be posted in JSON, encoded in UTF-8.
The JSON data must be a hash (an object). Keys and values must be
strings. The following fields are recognized:

	build_url: URL pointing to the origin of the build used in the
test run

	datetime: timestamp of the test run, as a ISO-8601 date
representation, with seconds. This is the representation that date
--iso-8601=seconds gives you.

	job_id: identifier for the test run. Must be unique for the
project. This field is mandatory

	job_status: string identifying the status of the project. SQUAD
makes no judgement about its value.

	job_url: URL pointing to the original test run.

	resubmit_url: URL that can be used to resubmit the test run.

	suite_versions: a dictionary with version number strings for suite names
used in the tests and metrics data. For example, if you have test suites
called "foo" and "bar", their versions can be expressed having metadata that
looks like this:

{
 # ...
 "suite_versions": {
 "foo": "1.0",
 "bar": "3.1"
 }
}

If a metadata JSON file is not submitted, the above fields can be
submitted as POST parameters. If a metadata JSON file is submitted, no
POST parameters will be considered to be used as metadata.

When sending a proper metadata JSON file, other fields may also be
submitted. They will be stored, but will not be handled in any specific
way.

CI loop integration (optional)

SQUAD can integrate with existing automation systems to participate in a
Continuous Integration (CI) loop through its CI subsystem. For more details
check CI module in SQUAD.

Default auth group 'squad'

SQUAD creates by default an auth group with most of the permissions required
for authenticated/registered users to view, add, change and delete objects
in the projects they have access to. The name of the group is 'squad' by default.
All newly created users therefrom are automatically added to this group to eleviate
the need for manual intervention to add a user each time one is created.

Quick start: Running SQUAD locally

SQUAD is a Django application and works just like any other Django
application. If you are new to Django and want to setup a development
environment, you can follow the instructions below. If you want to
install SQUAD for production usage, see Installation Instructions for production environments instead.

Note that SQUAD is Python3-only, so it won't work with Python 2.

Before moving on, there's a system dependency needed for Python to load yaml content
with the C library, install it with:

apt-get install libyaml-dev

To install the dependencies:

pip3 install -r requirements-dev.txt

Alternatively to using pip, on Debian stretch or later you can install
dependencies from the repository:

apt-get install python3-dateutil python3-django python3-celery \
 python3-django-celery python3-jinja2 python3-whitenoise python3-zmq

To run the tests:

./manage.py test

Before running the application, create the database and an admin user
for yourself:

./manage.py migrate
./manage.py createsuperuser

To run the application locally:

./manage.py runserver

Development-related notes and tips

Running a development environment under Docker

To run tests, migrate database, and start the web server:

./dev-docker

To open a shell in the development environment:

./dev-docker bash

NOTE if you're running a firewall on your system, like ufw, make sure to
allow the docker interface to interact with your system's. If you're running
ufw, do so with sudo ufw allow in on docker0.

Checklist for loading a copy of a production database

This procedure assumes you are using PostgreSQL in production, and will use
PostgreSQL locally. If you are using sqlite, then the procedure is trivial
(just copy the database file).

on the server:

	dump the database: pg_dump -F custom -f /tmp/dump squad

locally:

	create empty DB: createdb squad

	copy dump: scp SERVER:/tmp/dump /tmp/

	load dump: pg_restore -d squad -j4 /tmp/dump

	migrate database: ./manage.py migrate

	create superuser: ./manage.py createsuperuser

	anonymize data: ./manage.py prepdump # avoid mailing users

Running Javascript unit tests

In order to run Javascript unit tests, you need to installl nodejs and npm
package manager, then install the dependencies from the package-lock.json file.
Depending on the distribution, you can either install npm directly from
repositories or alternatevely add PPA and then install it. Here's the
instructions of how to setup up after the npm package manager is installed:

sudo apt-get install chromium
npm install

Simply running the Django tests will also run the Javascript unit tests:

./manage test

Or, you can run only the Javascript unit tests with one of these commands:

python3 python3 test/javascript.py # or
python3 -m test.javascript

Log monitoring

SQUAD uses Python's logging library to log events during its execution,
it's important to keep track of those and sometimes it's nice to have
an extra tool to give admins a heads up that things aren't working correctly
for example when an ERROR log comes up.

In such scenario, SQUAD will try to send emails with the log content to admins
registered in SQUAD_ADMINS environment variable.

SQUAD also support log monitoring and aggregation with Sentry, a tool that
collects similar error logs and manage them nicer than just regular text emails.
To enable Sentry support two steps are needed:

	set SENTRY_DSN environment variable with a dsn retrieved after creating a project
in sentry.

	install Sentry's Python SDK: pip install sentry-sdk

Translating the SQUAD user interface

The SQUAD translations are kindly hosted by Weblate [https://hosted.weblate.org/].

The translations are split into different components, which match the separate
modules in the squad codebase. As of this writing, we have the components
core and frontend. When you are reading this, we could have others.

In order to work with SQUAD translations, you need to create a weblate account.

To translate SQUAD into your language, just go to the project page on
weblate [https://hosted.weblate.org/projects/squad/], click on the component you want, and then click on your language.

If your language does not exist yet for that component, just click "Start new
translation".

Translation updates made on weblate are sent back to the SQUAD source code
repository once a day.

Plugins: usage and development

Enabling plugins

Every available plugin needs to be enabled for each project in which it should
be used. For that, access the Administration interface, edit the project, and
add the wanted plugin names to the "Enabled plugin list" field.

Declaring plugins in your Python package

SQUAD plugins are Python classes that are a subclass of squad.core.plugins.Plugin,
and can be provided by any Python package installed in the system. To register
the plugin with SQUAD, you need to use the "entry points" system. In the
setup.py for your package, use the following:

setup(
 # ...
 packages='mypluginpackage'
 # ...
 entry_points={
 # ...
 'squad_plugins': [
 'myplugin1=mypluginpackage.Plugin1',
 'myplugin2=mypluginpackage.Plugin2',
]
 },
 # ...
)

Now, the plugin itself can be implemented in mypluginpackage.py, like this:

from squad.core.plugins import Plugin

class Plugin1(Plugin):
 # implementation of the plugin methods ...

class Plugin2(Plugin):
 # implementation of the plugin methods ...

The next next section, "The plugin API" documents which methods can be defined
in your plugin class in order to provide extra functionality to the SQUAD core.

The plugin API

	
class squad.core.plugins.Plugin

	This class must be used as a superclass for all SQUAD plugins. All the
methods declared here have empty implementations (i.e. they do nothing),
and should be overriden in your plugin to provide extra functionality to
the SQUAD core.

	
notify_patch_build_created(build)

	This method is called when a patch build is created. It should notify
the corresponding patch source that the checks are in progress.

The build argument is an instance of squad.core.Build.

	
notify_patch_build_finished(build)

	This method is called when a patch build is finished. It should notify
the patch source about the status of the tests (success, failure, etc).

The build argument is an instance of squad.core.Build.

	
postprocess_testjob(testjob)

	This method is called after a test job has been fetched by SQUAD, and
the test run data (tests, metrics, metadata, logs, etc) have been saved
to the database.

You can use this method to do any processing that is specific to a
given CI backend (e.g. LAVA).

The testjob arguments is an instance of
squad.ci.models.TestJob.

	
postprocess_testrun(testrun)

	This method is called after a test run has been received by SQUAD, and
the test run data (tests, metrics, metadata, logs, etc) have been saved
to the database.

You can use this method to parse logs, do any special handling of
metadata, test results, etc.

The testrun arguments is an instance of
squad.core.models.TestRun.

Adding plugin usage to the SQUAD core

Code from the SQUAD core that wants to invoke functionality from plugins should
use the apply_plugins function.

	
squad.core.plugins.apply_plugins(plugin_names)

	This function should be used by code in the SQUAD core to trigger
functionality from plugins.

The plugin_names argument is list of plugins names to be used. Most
probably, you will want to pass the list of plugins enabled for a given
project, e.g. project.enabled_plugins.

Example:

from squad.core.plugins import apply_plugins

...

for plugin in apply_plugins(project.enabled_plugins):
 plugin.method(...)

Full plugin package example

This section presents a minimal, working example of a Python package that
provides one SQUAD plugin. It is made of only two files: setup.py and
examplepluginpackage/__init__.py.

setup.py:

from setuptools import setup, find_packages

setup(
 name='examplepluginpackage',
 version='1.0',
 author='Plugin Writer',
 author_email='plugin.writer@example.com',
 url='https://example.com/examplepluginpackage',
 packages=find_packages(),
 include_package_data=True,
 entry_points={
 'squad_plugins': [
 'externalplugin=examplepluginpackage:MyPlugin',
]
 },
 license='AGPLv3+',
 description="An example Plugin pacakge",
 long_description="""
 The Example Plugin package is a sample plugin for SQUAD that
 shows how to write SQUAD plugins
 """,
 platforms='any',
)

examplepluginpackage/__init__.py:

from squad.core.plugins import Plugin

class MyPlugin(Plugin):

 def postprocess_testrun(self, testrun):
 # do something interesting with the the testrun ...
 pass

Built-in notification plugins

SQUAD comes with two bult-in plugins available for immediate use.

Github

The Github plugin allows patches (Pull Requests) originated from Github
to be notified whenever a build has been created or finished.

Here is an example API call that supposedly came from a Jenkins job, triggered
by a freshly opened Github Pull Request:

$ curl \
 -X POST \
 --header "Auth-Token: $SQUAD_TOKEN" \
 -d patch_source=your-github-patch-source \
 -d patch_baseline=build-v1 \
 -d patch_id=the_owner/the_repo/8223a534d7bf \
 https://squad.example.com/api/createbuild/my-group/my-project/build-v2

	Where:

	
	patch_source is the name of a "Patch Source" previously added in squad
in "Administration > Core > Patch sources > Add patch source", where you should
select "github" for "implementation". NOTE the Github plugin requires a
token for authentication, so please ignore the "password" field.

	patch_baseline is an optional parameter that indicated that the build being
created is a new version of "patch_baseline" build.

	patch_id is a string in a form like "owner/repository/commit" of the respective
Github repository.

If everything was successfully submitted, you should see a notification in the Github
page for that Pull Request. Subsequent tests on that build are going to be performed
and as SQUAD detects that all tests are done, another notification should be sent out
on that Pull Request, informing that the build is finished.

Gerrit

The Gerrit plugin allows changes originated from a Gerrit instance
to be notified whenever a build has been created or finished.

Here is an example API call that supposedly came from a Jenkins job, triggered
by a freshly created change:

$ curl \
 -X POST \
 --header "Auth-Token: $SQUAD_TOKEN" \
 -d patch_source=your-gerrit-patch-source \
 -d patch_baseline=build-v1 \
 -d patch_id=change-id/patchset \
 https://squad.example.com/api/createbuild/my-group/my-project/build-v2

	Where:

	
	patch_source is the name of a "Patch Source" previously added in squad
in "Administration > Core > Patch sources > Add patch source", where you should
select "gerrit" for "implementation". NOTE 1 the Gerrit plugin requires a
password (configured as HTTP Password in Gerrit) for authentication, so please
ignore the "token" field. NOTE 2 the Gerrit plugin also allows SSH based
notifications by using "ssh://" instead of "https://" in the "url" field.
NOTE 3 SSH connections are made only through key exchange, so please set it
up before attempting to use this feature

	patch_baseline is an optional parameter that indicated that the build being
created is a new version of "patch_baseline" build.

	patch_id is a string in a form like "change-id/patchset" of the respective Gerrit
repository.

NOTE

By default, the plugin will only apply "Code-Review -1" for builds that errored.
Custom labels are supported if specified in project settings. Here is a example on how
to specify custom labels for gerrit:

plugins:
 gerrit:
 build_finished:
 success:
 Code-Review: "+1"
 Validation-Bot-Review: "+1"
 error:
 Code-Review: "-1"
 My-Custom-Bot-Review: "-1"

If everything was successfully submitted, you should see a notification in the Gerrit
page for that Change. Subsequent tests on that build are going to be performed
and as SQUAD detects that all tests are done, another notification should be sent out
on that Change, informing that the build is finished.

Installation Instructions for production environments

Installation using the Python package manager pip

Make sure you have the pip Python package manager installed on your Python 3
environment, and the C library for YAML development. On Debian/Ubuntu,
the easiest way to do that is:

apt-get install python3-pip libyaml-dev

Install squad:

pip3 install squad

By default, SQUAD works with sqlite, but if Postgres is required, then specific
binaries are needed:

apt-get install python3-pip libyaml-dev libpq-dev

Install squad with Postgres support:

pip3 install squad[postgres]

Message broker

In order to SQUAD processes to be able to communicate between each other, you
need to install an AMQP server. We recommend RabbitMQ:

apt-get install rabbitmq-server

By default SQUAD will look for an AMQP server running on localhost, listening
to the standard port, so for a single-server deployment you don't need to do
anything else.

If you have a multi-server setup, then each server needs to be configured with
the location of a central AMQP server. See the SQUAD_CELERY_BROKER_URL in the
"Further configuration" section below.

Processes

SQUAD is composed of 4 different process:

	web application server

	background worker (celery worker)

	periodic task scheduler (celery beat)

	CI backend listener

To run the web interface, run as a dedicated user (i.e. don't run the
application as root!):

squad

	Note: if that doesn't work, ~/.local/bin is probably missing in the $PATH environment variable.

This will make the web UI available at http://localhost:8000/. To serve the UI
to external users, you will need to setup a public-facing web server such as
Apache or nginx and reverse proxy to localhost on port 8000. You can change the
address or port SQUAD listens to by passing the --bind command line option,
e.g. to make it listen to port 5000 on the local loopback interface, use:

squad --bind 127.0.0.0:5000

For production usage, you will want to tweak at least the database
configuration. Keep reading for more information.

After starting SQUAD, but before acessing it, you will need a user. To create
an admin user for yourself, use:

squad-admin createsuperuser

These are the command lines to run the other processes:

	Process

	Command

	worker

	celery -A squad worker

	scheduler

	celery -A squad beat

	listener

	squad-admin listen

You most probably want all the processes (including the web interface) being
managed by a system manager such as systemd [https://www.freedesktop.org/wiki/Software/systemd/], or a process manager such as
supervisor [http://supervisord.org/].

For an example deployment, check the configuration management repository for
Linaro's qa-reports [https://github.com/Linaro/qa-reports.linaro.org] (using ansible).

After having the necessary processes running, there are a few extra setup steps
needed:

	Create Backend instances for your test execution backends. Go to the
administration web UI, and under "CI", choose "Backends".

	For each project, create authentication tokens and subscriptions

Worker configuration

The worker process handles background tasks, such as submitting CI jobs,
fetching the results fo CI jobs, preparing reports that require intensive
processing, etc. Some tasks take a lot longer than the others, e.g. submitting
a CI job is pretty quick, while fetching CI job results takes some time to
fetch all the data, parse it, and store in the database.

To allow for better load balancing, these tasks are split into multiple queues:

	ci_fetch

	ci_poll

	ci_quick

	core_notification

	core_postprocess

	core_quick

	core_reporting

ci_fetch and ci_poll can be potentially slow, and if there is a large
influx of those types of tasks, your system may display some congestion because
all available worker threads are occupied running slow tasks, while several of
the quick ones are waiting their turn.

To avoid this, you might want to start a small part of your workers so that
they will not pick up any of those slow tasks:

squad worker --exclude-queues ci_fetch,ci_poll

Or you can also give an explicit task list, which is less flexible but might be
useful:

squad worker --queues core_quick,ci_quick

By default, workers listen to all queues.

For message brokers that support prefixed-queue names, SQUAD has the optional
environment variable SQUAD_CELERY_QUEUE_NAME_PREFIX, that, if set, will
prepend it before all queue names. SQUAD also support adding a suffix via
the optional environment variable SQUAD_CELERY_QUEUE_NAME_SUFFIX

Further configuration

The following environment variables affect the behavior of SQUAD:

	DATABASE: controls the database connection parameters. Should contain
KEY=VALUE pairs, separated by colons (:).

By default, SQUAD will use a SQLite3 database in its internal data directory.

For example, to use a PostgreSQL database (requires the psycopg2 Python
package to be installed):

DATABASE=ENGINE=django.db.backends.postgresql_psycopg2:NAME=mydatabase:USER=myuser:HOST=myserver:PASSWORD=mypassword

	SQUAD_EXTRA_SETTINGS: path to a Python file with extra Django settings.

	SQUAD_SITE_NAME: name to be displayed at the page title and navigation
bar. Defaults to 'SQUAD'.

	XDG_DATA_HOME: parent directory of the SQUAD internal data directory.
Defaults to ~/.local/share. The actual data directory will be
${XDG_DATA_HOME}/squad.

	SECRET_KEY_FILE: file to store encryption key for user sessions. Defaults
to ${XDG_DATA_HOME}/squad/secret.dat

	DJANGO_LOG_LEVEL: the logging level used for Django-related logging.
Default: INFO.

	SQUAD_LOG_LEVEL: the logging level for SQUAD-specific logging. Default:
INFO.

	SQUAD_HOSTNAME: hostname used to compose links in asynchronous
notifications (e.g. emails). Defaults to the FQDN of the host where SQUAD is
running.

	SQUAD_BASE_URL: Base URL to the SQUAD web interface, used when composing
links in notifications (e.g. emails). Defaults to
https://$SQUAD_HOSTNAME.

	SQUAD_EMAIL_FROM: e-mail used as sender of email notifications. Defaults
to noreply@$SQUAD_HOSTNAME.

	SQUAD_EMAIL_HOST: hostname to use as e-mail delivery host. Sets Django's
EMAIL_HOST setting. See the Django documentation on sending email [https://docs.djangoproject.com/en/1.11/topics/email/] for
more details.

	SQUAD_LOGIN_MESSAGE: a message to be displayed to users right above the
login form. Use for example to provide instructions on what credentials to
use. Defaults no message.

	SQUAD_ADMINS: Comma-separated list of administrator email addresses, for
use in exception notifications. Each address must be formatted as
First Last <first.last@example.com>.

	SQUAD_SEND_ADMIN_ERROR_EMAIL: Determines whether or not to send exception
notifications to administrators. Defaults to True.

	SENTRY_DSN: Defines Sentry's DSN token, if defined SQUAD will attempt to
import Sentry SDK and use it. Defaults to None. If Sentry is configured
it's recommended to disable sending admin notifications by setting
SQUAD_SEND_ADMIN_ERROR_EMAIL = False.

	SQUAD_STATIC_DIR: Directory where SQUAD will find it's preprocessed
static assets. This usually does not need to be set manually, and exists
mostly for use in the Docker image.

	SQUAD_CELERY_BROKER_URL: URL to the broker to be used by Celery for
background jobs. Defaults to amqp://localhost:5672.

	SQUAD_CELERY_QUEUE_NAME_PREFIX: Name to prefix all queues in Celery.
Useful when multiple environments share the same broker.
Defaults to ''.

	SQUAD_CELERY_QUEUE_NAME_SUFFIX: Name to concatenate all queues in Celery.
Useful when a queue extension is needed by the broker.
Defaults to ''.

	SQUAD_CELERY_POLL_INTERVAL: Number of seconds a worker will sleep
after an empty answer from SQS before the next polling attempt.
Defaults to 1.

User management

SQUAD provides 'users' management command that allows to list, add, update
and display details about users. This command comes handy when trying to
automate SQUAD setup with containers. Details about user management with
'users' command:

	list
Displays list of all available users with their names (first, last)
from database

	details <username>
Displays details about requested username. Details include:

	username

	is_active

	is_staff

	is_superuser

	groups

	add <username>
Adds new user with given 'username'. It also takes additional parameters

	--email EMAIL email of the user

	--passwd PASSWD Password for this user. If empty, a random password is
generated.

	--staff Make this user a staff member

	--superuser Make this user a super user

	update <username>
Updates database record of existing user identified with 'username'. It takes
additional parameters

	--email EMAIL Change email of the user

	--active Make this user active

	--not-active Make this user inactive

	--staff Make this user a staff member

	--not-staff Make this user no longer a staff member

	--superuser Make this user a superuser

	--not-superuser Make this user no longer a superuser

CI: continous integration support

CI module in SQUAD

This subsystem has the following features:

	receiving test job requests

	submitting test job requests to test execution backends

	pulling test job results from test execution backends

The data model for the CI subsystem looks like this:

+---------+ +---------+ +------------------------+
| TestJob |--->| Backend |--->| Backend implementation |
+---------+ +---------+ +------------------------+
 |
 | +---------------------+
 +-------->| TestRun (from core) |
 +---------------------+

TestJob holds the data related to a test job request. This test job is going to
be submitted to a Backend, and after SQUAD gets results back from that backend,
it will create a TestRun object with the results data. A Backend is a
representation of a given test execution system, such as a LAVA server, or
Jenkins. Backend contains the necessary data to access the backend, such as
URL, username and password, etc, while Backend implementation encapsulates
the details on how to interact with that type of system (e.g. API calls, etc).
So for example you can have multiple backends of the same type (e.g. different
2 LAVA servers).

For the CI loop integration to work, you need to run a few extra
processes beyond the web interface. See Installation Instructions for production environments for details.

Submitting test job requests

The API is the following

POST /api/submitjob/:group/:project/:build/:environment

	group, project, build and environment are used to
identify which project/build/environment will be used to record the
results of the test job.

	The following data must be submitted as POST parameters:

	backend: name of a registered backend, to which this test job
will be submitted.

	definition: test job definition. The contents and format are
backend-specific. If it is more convenient, the definition can also
be submitted as a file upload instead of as a POST parameter.

Example (with test job definition as POST parameter):

$ DEFINITION="$(cat /path/to/definition.txt)"
$ curl \
 --header "Auth-Token: $SQUAD_TOKEN" \
 --form backend=lava \
 --form definition="$DEFINITION" \
 https://squad.example.com/api/submitjob/my-group/my-project/x.y.z/my-ci-env

Example (with test job definition as file upload):

$ curl \
 --header "Auth-Token: $SQUAD_TOKEN" \
 --form backend=lava \
 --form definition=@/path/to/definition.txt \
 https://squad.example.com/api/submitjob/my-group/my-project/x.y.z/my-ci-env

Submitting test job watch requests

Test job watch request are similar to test job requests. The only difference is
that some other service submitted the test job for execution and SQUAD is
requested to track the progress. After test job is finished SQUAD will retrieve
the results and do post processing. The API is following:

POST /api/submitjob/:group/:project/:build/:environment

	group, project, build and environment are used to
identify which project/build/environment will be used to record the
results of the test job.

	The following data must be submitted as POST parameters:

	backend: name of a registered backend, to which this test job
was be submitted.

	testjob_id: test job ID. The contents and format are
backend-specific.

Example (with test job definition as POST parameter):

$ curl \
 --header "Auth-Token: $SQUAD_TOKEN" \
 --form backend=lava \
 --form testjob_id=123456 \
 https://squad.example.com/api/watchjob/my-group/my-project/x.y.z/my-ci-env

Backend settings

Backends support internal settings that are stored in the database. It is
assumed that settings are a valid YAML markup.

Supported backends

	Out of the box SQUAD supports following backends:

	
	LAVA [https://validation.linaro.org/static/docs/v2/]

LAVA

SQUAD supports only LAVA v2. Old version of LAVA was made obsolete with 2017.11
LAVA release.

	LAVA backend supports the following settings:

	
	CI_LAVA_INFRA_ERROR_MESSAGES
a list of strings that cause automated job resubmission when matched
in the LAVA error message

	CI_LAVA_SEND_ADMIN_EMAIL
boolean flag that prevents sending admin emails for each resubmitted
job when set to False

	CI_LAVA_HANDLE_SUITE
boolean flag that parses results from LAVA test suite when
set to True. Please note that this option can be overwritten by
having the same option with different value in Project project_settings

	CI_LAVA_CLONE_MEASUREMENTS
boolean flag that allows to save LAVA result as both Test and Measurement
when set to True. Default is False. Can be overwritten for each
project separately (similar to CI_LAVA_HANDLE_SUITE).

	CI_LAVA_HANDLE_BOOT
boolean flag that parses LAVA auto-login-action as a boot
test when set to True. Default is False. Can be overwritten for
each project separately (similar to CI_LAVA_HANDLE_SUITE). NOTE:
Before SQUAD 1.x series, the default behavior was to always process
auto-login-action as boot. After 1.x, the default behavior has changed
to do the opposite.

	CI_LAVA_WORK_AROUND_INFRA_ERRORS
boolean flag that allows to accept test results from 'Incomplete' jobs if the
failure was caused by infrastracture. NOTE: Use with caution!

Example LAVA backend settings:

CI_LAVA_INFRA_ERROR_MESSAGES:
 - 'Connection closed'
 - 'lava_test_shell connection dropped.'
 - 'fastboot-flash-action timed out'
 - 'u-boot-interrupt timed out'
 - 'enter-vexpress-mcc timed out'
 - 'Unable to fetch git repository'
CI_LAVA_SEND_ADMIN_EMAIL: False
CI_LAVA_HANDLE_SUITE: True

Multinode

SQUAD supports fetching results from LAVA multinode jobs. There are however
a few limitations with this setup:

	All results from multinode will share environment name
Since test jobs are submitted via SQUAD using the environment from submit
URL there is no way for SQUAD to distinguish between different environmens
on different parts of multinode job.

	Resubmit will repeat the whole set
In SQUAD all parts of multinode job will share the multinode definition.
For this reason re-submitting any part of the multinode job will result
in new multinode job that includes all parts.

	Each part of the multinode job will be retrieved separately
This means that each part will create a TestRun in SQUAD. This should not
be a major issue as all results will still be available. Users need to make
sure that the test names don't overlap as SQUAD will not have any means of
distinguishing between identically named tests from different parts of
multinode job.

API: Interacting with backend

Available APIs

SQUAD has a set of APIs that allow to interact with it's backend. There
are two main parts of the API

	Native API
This is meant to provide main features of SQUAD (submitting results,
submitting CI test jobs)

	REST API
Provides access to almost all properties of core data model objects. Also
provides additional features that can be used to build alternative
frontends or automated tools.

Native APIs

data

GET /api/data/<group_slug>/<project_slug>/

Retrieves metrics data in JSON format. The following parameters are mandatory:

	metric: which metric to retrieve. You have to use the full metric name,
i.e. <suite_slug>/<metric_slug>.

This parameter can be specified multiple times, so data from multiple metrics
can be fetched with a single request.

	environment: environment for which metric data is to be retrieved.

This parameter can be specified multiple times, so data from multiple
environments can be fetched with a single request.

	format: format of response. Valid values are json and csv. If this
parameter is ommited, json is used as a default.

The JSON response is an object, which metrics as keys. Values are also objects,
which environments as keys, and the data series as values. Each data point is
an array with 3 values: the build date timestamp (as the number of seconds
since the epoch), the value of the metric, and the build identifier.

Example:

{
 "mysuite/mymetric": {
 "environment1": [
 [1537210872, 1.15, "v0.50.1-21-g7b96236"],
 [1537290845, 1.14, "v0.50.1-22-g1097312"],
 [1537370812, 1.13, "v0.50.1-23-g0127321"],
 [1537420892, 1.15, "v0.50.1-24-g8262524"],
 [1537500801, 1.13, "v0.50.1-25-gfa72526"],
 // [...]
],
 "environment2": [
 [1537210872, 1.25, "v0.50.1-21-g7b96236"],
 [1537290845, 1.24, "v0.50.1-22-g1097312"],
 [1537370812, 1.23, "v0.50.1-23-g0127321"],
 [1537420892, 1.25, "v0.50.1-24-g8262524"],
 [1537500801, 1.23, "v0.50.1-25-gfa72526"],
 // ...
]
 },
 "mysuite/anothermetric": {
 // [...]
 }
}

The CSV response contains one line for each data point. The columns are:
metric, environment, timestamp, value, build identifier. Assuming the same data
as the JSON example above, the CSV would look like this:

"mysuite/mymetric","environment1","1537210872","1.15","v0.50.1-21-g7b96236"
"mysuite/mymetric","environment1","1537290845","1.14","v0.50.1-22-g1097312"
"mysuite/mymetric","environment1","1537370812","1.13","v0.50.1-23-g0127321"
"mysuite/mymetric","environment1","1537420892","1.15","v0.50.1-24-g8262524"
"mysuite/mymetric","environment1","1537500801","1.13","v0.50.1-25-gfa72526"
[...]
"mysuite/mymetric","environment2","1537210872","1.25","v0.50.1-21-g7b96236"
"mysuite/mymetric","environment2","1537290845","1.24","v0.50.1-22-g1097312"
"mysuite/mymetric","environment2","1537370812","1.23","v0.50.1-23-g0127321"
"mysuite/mymetric","environment2","1537420892","1.25","v0.50.1-24-g8262524"
"mysuite/mymetric","environment2","1537500801","1.23","v0.50.1-25-gfa72526"
[...]
"mysuite/anothermetric",[...]
[...]

createbuild

POST /api/createbuild/<group_slug>/<project_slug>/<version_string>

Creates Build object. Following parameters are accepted:

	patch_source - string matching PatchSource.name

	patch_baseline - version string matching Build.version

	patch_id - string identifying the patched version (for example git commit ID)

submit

Submitting results.

submitjob

Submitting test job requests.

watchjob

Submitting test job watch requests.

resubmit

POST /api/resubmit/<job_id>

This API is only available to superusers at the moment. It allows to resubmit
CI test jobs using Backend's implementation.

forceresubmit

POST /api/forceresubmit/<job_id>

This API is only available to superusers at the moment. It allows to resubmit
CI test jobs using Backend's implementation. Works similarly to 'resubmit' but
doesn't respect 'can_resubmit' flag on the TestJob object.

REST APIs

The REST API is powered by `Django Rest Framework (DRF)<https://www.django-rest-framework.org/>`_ and
Django fields lookups [https://docs.djangoproject.com/en/3.0/topics/db/queries/#field-lookups].
This means that for supported endpoints you can do a field lookup. For example,
querying all testruns that belong to a build that belongs to a project called
MyProject, one would run a query like:

GET /api/testruns/?build__project__name=MyProject

This gives the API flexibility for filtering in many different ways.

groups (/api/groups/)

Provides access to Group object. This object corresponds to SQUAD Group
(not to be confused with Django group). The Group objects can be filtered
and searched. Both operations can be done using 'name' and 'slug' fields.

With enough privileges Groups can also be created, modified and deleted
using REST API with POST, PUT and DELETE HTTP requests respectively

projects (/api/projects/)

Provides access to Project object. In case of private projects token with
enough privileges is required to access the object. Project API endpoint has
following additional routes:

	builds (/api/projects/<id>/builds/)

Provides list of builds associated with this project. List is paginated

	test_results (/api/projects/<id>/test_results/)

Provides list of latest results for given test for all environments.
'test_name' is a mandatory GET parameter for this call. List is paginated.
It is advised to limit the search results to 10 to avoid poor performance.
This can be achieved using 'limit=10' GET parameter

	subscribe (/api/projects/<id>/subscribe/)

Provides means to subscribe either email address or user to the project
notifications in automated way. This endpoint expects POST request with
single field "email"

	unsubscribe (/api/projects/<id>/unsubscribe/)

Provides means to unsubscribe either email address or user from the project
notifications in automated way. This endpoint expects POST request with
single field "email"

With enough privileges Projects can also be created, modified and deleted
using REST API with POST, PUT and DELETE HTTP requests respectively

builds (/api/builds/)

Provides access to Build object. In case of private projects token with
enough privileges is required to access the object. Build API endpoint has
following additional routes:

	metadata (/api/builds/<id>/metadata/)

Provides list of all metadata key-value pairs associated with this object

	status (/api/builds/<id>/status/)

Provides access to ProjectStatus object associated with this object

	testruns (/api/builds/<id>/testruns)

Provides list of TestRun objects associated with this object

	testjobs (/api/builds/<id>/testjobs/)

Provides list of TestJob objects associated with this object

	email (/api/builds/<id>/email/)

Provides contents of email notification that would be generated for this object.
Content is generated using either EmailTemplate associated with the Project
or a custom one. The EmailTemplate has to be defined in SQUAD database before
API is called. The route takes the following GET parameters:

	output - mime type to be generated. Defaults to "text/plain". Can also be set
to "text/html". Using HTML requires HTML part of the EmailTemplate to be defined

	template - ID of the EmailTemplate to be used

	baseline - ID of the Build object to be used as comparison baseline. The default
is "previous finished" build in the same project.

	force - if set to true invalidates cached object. Default is false

	report (/api/build/<id>/report/)

This API accepts both GET and POST requests.

Provides non blocking version of 'email' API. Both calls will produce DelayedReport
objects which cache the results of the call. Non blocking version ('report')
is recommended as it is executed in separate process on the worker node and
doesn't affect web frontend performance or memory consumption. Reports might be
resource hungry and long running which causes webserver requests to time out.
Non blocking call returns immediately returning url to the cached resource.
Final results can be retrieved by:

	email notification

	callback notification

	polling the result URL - Results are completed when 'status_code' field
is filled in (not None/Null)

'report' API has following options:

	output - mime type to be generated. Defaults to "text/plain". Can also be set
to "text/html". Using HTML requires HTML part of the EmailTemplate to be defined

	template - ID of the EmailTemplate to be used

	baseline - ID of the Build object to be used as comparison baseline. The default
is "previous finished" build in the same project.

	email_recipient - email address which is notified when report is ready

	callback - URL which SQUAD calls when report is ready. Call is made using POST
request type. Call can be secured with token

	callback_token - token/password for securing callback. When "callback" option
is present it adds "Authorization" and "Auth-Token" headers to the HTTP POST
call. It is recommended to send this option usig POST request to avoid password
leakage.

	keep - number of days to keep the cached reports in the database

	force - if set to true invalidates cached object. Default is false

With enough privileges Builds can also be created, modified and deleted
using REST API with POST, PUT and DELETE HTTP requests respectively. This is
however not recommended.

testjobs (/api/testjobs/)

Provides access to TestJob object. In case of private projects token with
enough privileges is required to access the object. Build API endpoint has
following additional routes:

	definition

Returns plain text version of the TestJob.definition field. This is pretty specific
to LAVA but doesn't exclude any other automated execution tools.

testruns (/api/testruns/)

Provides access to TestRun object. In case of private projects token with
enough privileges is required to access the object. Build API endpoint has
following additional routes:

	tests_file (/api/testruns/<id>/tests_file/)

	metrics_file (/api/testruns/<id>/metrics_file/)

	metadata_file (/api/testruns/<id>/metadata_file/)

	log_file (/api/testruns/<id>/log_file/)

	tests (/api/testruns/<id>/tests/)

	metrics (/api/testruns/<id>/metrics/)

	status (/api/testruns/<id>/status/)

Provides a list of TestRun's statuses. One can also passing in filters to
get specific results, e.g. /api/testruns/<id>/status/?suite__isnull=true
retrieves the overall Status object for that testrun.

tests (/api/tests/)

Provides access to Tests objects. In case of private projects token with
enough privileges is required to access the objects.

metrics (/api/metrics/)

Provides access to Metrics objects. In case of private projects token with
enough privileges is required to access the objects.

suites (/api/suites/)

Provides access to Suite object. In case of private projects token with
enough privileges is required to access the object.

environments (/api/environments/)

Provides access to Environment object. In case of private projects token with
enough privileges is required to access the object.

backends (/api/backends/)

Provides access to Backend object.

With enough privileges Backend can also be created, modified and deleted
using REST API with POST, PUT and DELETE HTTP requests respectively

emailtemplates (/api/emailtemplates/)

Provides access to EmailTemplate object.

With enough privileges EmailTemplate can also be created, modified and deleted
using REST API with POST, PUT and DELETE HTTP requests respectively

knownissues (/api/knownissues/)

Provides access to KnownIssue object.

With enough privileges KnownIssue can also be created, modified and deleted
using REST API with POST, PUT and DELETE HTTP requests respectively

patchsources (/api/patchsources/)

Provides access to PatchSource object.

annotations (/api/annotations/)

Provides access to Annotation object.

With enough privileges Annotation can also be created, modified and deleted
using REST API with POST, PUT and DELETE HTTP requests respectively

metricthresholds (/api/metricthresholds/)

Provides access to MetricThreshold object.

With enough privileges MetricThreshold can also be created, modified and deleted
using REST API with POST, PUT and DELETE HTTP requests respectively

reports (/api/reports/)

Provides access to results of /api/build/<id>/email and /api/build/<id>/report
results. Both of these endpoints create DelayedReport objects and present
them to the user. The difference is that 'email' API is blocking and 'report'
is not blocking (returns immediately).

status_code field in the reports endpoint will indicate whether the report is
ready. If the field is empty, the report wasn't prepared yet. status_code follows
the HTTP status codes. Anything else that 200 in status_code field suggests
a problem. error_message field can be checked to learn about issue details.

REST API Schema (for CLI)

SQUAD's API supports API clients. Example is coreapi. In order for client
to understand the API SQUAD generates schema file. Schema is dynamically
built and it's available at /api/schema URL. Example usage with coreapi-cli:

coreapi get https://<host_tld>/api/schema
coreapi action projects list

More details about coreapi can be found on coreapi website and DRF website:

	http://www.coreapi.org/

	https://www.django-rest-framework.org/topics/api-clients/

SQUAD-Client

SQUAD team has been working on a client tool that help users query the API
easily, using a Python descriptive way of interacting with the backend.

If you are interested in using such tool, please check it out in
SQUAD-Client [https://github.com/Linaro/squad-client]

Badges

SQUAD offers project and build badges that can be used in the webpages

https://<squad_instance_tld>/group/project/badge
https://<squad_instance_tld>/group/project/build_version/badge

The colour of the badge matches the passed/failed condition.
Following colours are presented:

	green (#5cb85c) when there are no failed results

	orange (#f0ad4e) when there are both passed and failed results

	red (#d9534f) when there are no passed results

If there are no results, the badge colour is grey (#999)

Badge offers customization through following parameters:

	title

Changes the left part of the badge to a custom text

	passrate

Changes the right part of the badge to use pass rate rather than number
of tests passed, failed and skipped

	metrics

Changes the right part of the badge to use metrics instead of test results.
In such case badge colour is set to green. In case both 'metrics' and
'passrate' keywords are present, 'metrics' is ignored.

Google Data Studio

SQUAD has an implementation of the Google Data Studio Community Connector under
https://github.com/Linaro/squad/tree/master/scripts/community_connector/
There is also an existing deployment which will pull data from
https://qa-reports.linaro.org/ and resides in this location (it is currently
restricted to Linaro members):

https://datastudio.google.com/datasources/create?connectorId=AKfycbxnkmVPXZRad22brXQ6BIB3iG9-GPWbjZnXds0vTuU

SQUAD Connector takes three arguments, token, group and project. The token
argument is not required but then the dataset will be limited as for the
non-authenticated user.
After connecting it will display all the environments as metrics in the Data
Studio, and it will use date and SQUAD metrics as dimensions. User can use
this data to create reports and dashboards in the Google Data Studio as they
see fit.

User is also free to deploy an instance of the Connector of their own using the
code and manifest presented in the codebase.

Use case: setup SQUAD with LAVA

Introduction

Once SQUAD installation is complete, a typical use case would be integrating
it with a LAVA instance. The purpose of this use case is to describe a
step-by-step set up of SQUAD with LAVA to submit and fetch jobs. If you haven't
yet set up SQUAD, take a step back and follow Installation Instructions for production environments

Setting up a LAVA instance

LAVA has its own extensive documentation on how to get a server up and running.
If you don't have it already, please refer to LAVA installation [https://validation.linaro.org/static/docs/v2/installing_on_debian.html#debian-installation] to configure
yourself one. From this point it's taken that you have enough access to a
running LAVA v2 instance that jobs can be submitted to and fetched from.

	Note

	Make sure that your LAVA instance has event notifications enabled,
as it is disabled by default. See LAVA event notifications [https://validation.linaro.org/static/docs/v2/data-export.html#event-notifications] for details.

Creating a Backend for a LAVA instance

Log in into SQUAD admin view (/admin) and access ci > backends > add backend
for inclusion form. Fill up accordingly:

	name: name of the backend. Example: validation.linaro.org

	url: LAVA RPC2 endpoint, it's how SQUAD will communicate with LAVA. Example: https://validation.linaro.org/RPC2

	username: a LAVA user with enough access to submit jobs

	token: a generated token for the user above, used to securely connect to the LAVA instance. See LAVA authentication tokens [https://validation.linaro.org/static/docs/v2/first_steps.html?highlight=token#authentication-tokens] for details

	implementation type: leave it as lava

	backend settings: used to spare specific settings for LAVA instances. For details see Backend settings

	poll interval: number of minutes to wait before fetching a job from LAVA

	max fetch attempts: max number of times SQUAD will attempt to fetch a job from LAVA

	poll enabled: if this is disabled SQUAD will not try to poll jobs from LAVA

Creating a Project in SQUAD

SQUAD needs minimal data to start working with LAVA: Group and Project.
By logging in the admin view, go to core > groups > add to add a new
group and core > projects > add to add a new project. These are trivial
to create, but please feel free to contact us if any help is needed.

Submitting and fetching test jobs

Given that all steps above are working correctly, you are ready to submit your
first job through SQUAD. You can learn from LAVA documentation how to write
new test definitions or use existing ones. For the sake of simplicity,
we'll stick to LAVA's example of first job [https://validation.linaro.org/static/docs/v2/first-job.html] and use it to call SQUAD
api for submitting a new test job:

wget https://validation.linaro.org/static/docs/v2/examples/test-jobs/qemu-pipeline-first-job.yaml
curl localhost:8000/api/submitjob/<group-slug>/<project-slug>/<build-version>/<env> \
 --header "Auth-Token: $SQUAD_TOKEN" \
 --form "backend=<backend-name>" \
 --form "definition=@qemu-pipeline-first-job.yaml"

Where group-slug and project-slug are the ones created in steps above, whereas
build-version and env do not need to exist before submitting a job. For clarification buid-version
is usually a git-commit hash and env is commonly the board target that a job is running.
Although it's not covered in this tutorial, creating a squad-token is straightforward, do so
by logging into admin view and go to auth token > tokens > add to add an auth token for a user.
Lastly, backend-name is the one created in the sections above.

Extra use cases

The example above showed a simplistic SQUAD instance working along with a LAVA
one. More can be done by using SQUAD's backend API to transform it into a proxy
between a CI system (e.g. Jenkins) and a LAVA server. An instance of SQUAD is
currently running at https://qa-reports.linaro.org and its set up is fully
automated through ansible scripts at https://github.com/Linaro/qa-reports.linaro.org.

Index

 A
 | N
 | P

A

 	
 	apply_plugins() (in module squad.core.plugins)

N

 	
 	notify_patch_build_created() (squad.core.plugins.Plugin method)

 	
 	notify_patch_build_finished() (squad.core.plugins.Plugin method)

P

 	
 	Plugin (class in squad.core.plugins)

 	
 	postprocess_testjob() (squad.core.plugins.Plugin method)

 	postprocess_testrun() (squad.core.plugins.Plugin method)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 SQUAD — Software Quality Dashboard

 		
 Introduction: data model and usage

 		
 Core data model

 		
 Submitting results

 		
 Input file formats

 		
 Test results

 		
 Metrics

 		
 Metadata

 		
 CI loop integration (optional)

 		
 Default auth group 'squad'

 		
 Quick start: Running SQUAD locally

 		
 Development-related notes and tips

 		
 Running a development environment under Docker

 		
 Checklist for loading a copy of a production database

 		
 Running Javascript unit tests

 		
 Log monitoring

 		
 Translating the SQUAD user interface

 		
 Plugins: usage and development

 		
 Enabling plugins

 		
 Declaring plugins in your Python package

 		
 The plugin API

 		
 Adding plugin usage to the SQUAD core

 		
 Full plugin package example

 		
 Built-in notification plugins

 		
 Github

 		
 Gerrit

 		
 Installation Instructions for production environments

 		
 Installation using the Python package manager pip

 		
 Message broker

 		
 Processes

 		
 Worker configuration

 		
 Further configuration

 		
 User management

 		
 CI: continous integration support

 		
 CI module in SQUAD

 		
 Submitting test job requests

 		
 Submitting test job watch requests

 		
 Backend settings

 		
 Supported backends

 		
 LAVA

 		
 API: Interacting with backend

 		
 Available APIs

 		
 Native APIs

 		
 data

 		
 createbuild

 		
 submit

 		
 submitjob

 		
 watchjob

 		
 resubmit

 		
 forceresubmit

 		
 REST APIs

 		
 groups (/api/groups/)

 		
 projects (/api/projects/)

 		
 builds (/api/builds/)

 		
 testjobs (/api/testjobs/)

 		
 testruns (/api/testruns/)

 		
 tests (/api/tests/)

 		
 metrics (/api/metrics/)

 		
 suites (/api/suites/)

 		
 environments (/api/environments/)

 		
 backends (/api/backends/)

 		
 emailtemplates (/api/emailtemplates/)

 		
 knownissues (/api/knownissues/)

 		
 patchsources (/api/patchsources/)

 		
 annotations (/api/annotations/)

 		
 metricthresholds (/api/metricthresholds/)

 		
 reports (/api/reports/)

 		
 REST API Schema (for CLI)

 		
 SQUAD-Client

 		
 Badges

 		
 Google Data Studio

 		
 Use case: setup SQUAD with LAVA

 		
 Introduction

 		
 Setting up a LAVA instance

 		
 Creating a Backend for a LAVA instance

 		
 Creating a Project in SQUAD

 		
 Submitting and fetching test jobs

 		
 Extra use cases

_static/up-pressed.png

_static/up.png

_static/plus.png

